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Abstract

A super heavy dust event was identified with unprecedented PM,, in terms of speed
and concentration in the southeastern Asia. The average concentration was observed
exceeding the value of 1000 ug m~° for the duration lasting more than 10 h, with the
highest value reached 1724 ug m~2 in northern Taiwan on 21 March 2010. We found
that this case exhibited an uneven and intriguing spatial distribution of PM,, concen-
tration and transport speed between eastern and western Taiwan. Higher values were
observed in the western and northern areas. The differences in concentration can be
reached to 5 times in less than 100 km in the west-east bound distance while the vari-
ations can be up to 10 times within 400 km in north-south direction. A high resolution,
10 km, numerical study by Weather Research Forecast (WRF) and WRF-chem models
revealed that this intriguing spatial distribution of the Asian dust transport was resulting
from a strong coupling effect of the geographic channel effect and blocking of the east-
erly from the Pacific Ocean. We are confident that this coupling effect can be revealed
only by applying a high resolution numerical study in other similar regions.

1 Introduction

The impact of mineral dust on atmospheric environment and climate has been well
documented in the last few decades. Aerolian dust has the ability to affect the radiation
balance, cloud physics and chemical processes, and hence could have an impact on
the regional and even global climate. Over East Asia, the frequent outbreak of Asian
dust following the continental outflow during spring is one of the largest environmental
concerns in the region; for areas such as Japan (e.g. Kanayama et al., 2002; Uematsu
et al., 2002; Uno et al., 2001, 2008, 2009; Eguchi, 2009), Korea (Chun et al., 2001; In
and Park, 2003; Kim et al., 2005), Taiwan (Lin et al., 2004, 2005, 2007a) and even as
far south as Hong Kong (Gao et al., 2003; Fang et al., 1999; Wai and Tanner, 2005).
Especially Japan and Korea are frequently affected by the heavy dust events as they
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are located just downwind of the strong westerly winds that prevail during the dust
season. For example, Sun et al. (2001) estimated that about 67 % of the pathways of
suspended dust move across the continent, Korea, and Japan; north of 35°N to the
North Pacific Ocean, while only 33 % move south of 30° N. In other words, about one-
third of total dust events could be transported towards the areas south of 25° N, Taiwan
included.

Taiwan is located southeast off Mainland China. The prevailing northeasterly mon-
soon during winter and spring dominates the weather pattern and determines the air
quality through the significant long-range transport (LRT) events southward over Tai-
wan. However, the impact of LRT events on the air quality of Taiwan is quite inhomo-
geneous as to the spatial distributions. For example, Lin et al. (2004, 2005) indicated
that the impact of LRT Asian dust and air pollutants on air quality over central and
southwestern cities in Taiwan is insignificant. This phenomenon could be attributed
to the blocking effect of the central mountain range (CMR). The CMR occupies about
two thirds of Taiwan’s land mass (300 km x 100 km) and lies NNE-SSW (Fig. 1c¢) with
an average terrain height of about 2000 m (Yeh and Chen, 1998; Lin and Chen, 2002;
Lin et al., 2011) and some peaks of nearly 4000 m. The CMR significantly affects the
local circulation and interferes with the prevailing winds (Lin and Chen, 2002; Lin et al.,
2005), and hence could also affect LRT dust events and their spatial distribution over
Taiwan.

As a matter of fact, the unique structure of the CMR plays an important and dynamic
role in affecting the prevailing northeasterly winds and fronts during winter (December—
February) and spring (March—May), as has been documented by some researchers
(Chen and Lin, 1999; Chen and Hui, 1990; Trier et al., 1990; Chien and Kuo, 2006).
For example, Chien and Kuo (2006) documented from theoretical postulation that the
CMR can induce divergence and convergence and modify the intensity of the front
when it passes over Taiwan. Lee and Hills (2003) indicated that the air mass could be
channeled and accelerated over the Taiwan Strait. Due to Wuyi Mountain along the
coast of southeast China (highest peak at 2120 m) and the CMR of Taiwan, the winds
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are much stronger over the Taiwan Strait than over land on the both sides (Chang,
1989; Lee and Zhang, 1992). However, up to now, there is no literature that discusses
this impact on dust transport. We examine this mechanism for a super dust transport
event through a modeling study and data analysis in Sects. 3 and 4.

According to the hourly measurements of Taiwan Environmental Protection Admin-
istration (TEPA) air quality monitoring stations, a super heavy dust event was identified
on 21 March 2010. Within a few hours, the PM,, concentrations in northern Taiwan
dramatically peaked to higher than 1000 ug m~2 and were sustained for longer than
10 h at most of the monitoring stations. For example, the most serious was at Shihlin
(SL) station (Fig. 1c); from 03:00 LST (97 ug m'3) to 10:00LST (1393 ug m‘3), peaking
at 1724 pg m~2 at 12:00LST (Fig. 2a); on 21 March 2010, brought along by the strong
northeasterly. This was the highest Asian dust concentration event ever recorded in
Taiwan. Following the transport of air masses southward, we have found that this
case had significantly different spatial distributions of PM,, concentration and transport
speed between western and eastern Taiwan. The PM,, concentrations mostly ranged
from 1300 to 900 pg m~ over western Taiwan and Penghu Island (Taiwan Strait, MG
station), and at Hong Kong it was as high as 707 ug m™3 (Fig. 1b). However, over sta-
tions Hualien (HL) and Taitung (TT) in eastern Taiwan (Fig. 1c), peaks were only 598
and 185 ug m=>, respectively. Moreover, the concentration was only about 132 ug m=°
at Hungchun (HC) station at the southern tip of Taiwan (Fig. 1c), which is at the same
latitude as Hong Kong. This large discrepancy in the PM,, concentration between east
and west Taiwan associated with dust transport, as well as the roles of the unique ge-
ographic structures in Taiwan and southeastern China, are investigated in this study. A
high resolution WRF/Chem model was used to study these processes in this complex
terrain and to examine the mechanisms for the dust transport around and over Taiwan.
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2 Data source and model description
2.1 Data source

Measurements of hourly PM,, and other pollutants were taken from TEPA air quality
monitoring stations (Fig. 1c), which include more than 70 stations in Taiwan. Meteoro-
logical parameters, i.e. surface temperature, wind direction and speed, and rainfall, as
well as atmospheric concentrations of PM,, and some air pollutant species (NO,, CO,
SO,, VOC) are observed at TEPA stations in Taiwan. In this study, we mainly focused
on the variations in PM,, (the coarse ambient particle) concentration.

Reported dusty locations over Asia, derived from First GARP Global Experiment
(FGGE) data, were used to identify dust storm transport. Vertically-resolved extinc-
tion and depolarization measurements of atmospheric aerosols from CALIPSO have
been employed in this study. NASA Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP) was launched onboard the CALIPSO satellite on 28 April 2006 (Winker et
al.,, 2007). The CALIPSO Lidar Level 2 aerosol profile data using the CALIPSO Li-
dar Ratio selection algorithm was used in this study (Omar et al., 2009). The Level
2B (version 3.0) data products provided profiles of the extinction coefficient at 532 nm
and 1064 nm and of the particle depolarization ratio at 532 nm. CALIPSO, with its abil-
ity of depolarization measurement, can be applied to discriminate dust from other types
of aerosols (Liu et al., 2008). Furthermore, the direct broadcast real-time retrievals of
Aerosol Optical Depth (AOD) (550 nm) from the Moderate Resolution Imaging Spec-
troradiometer (MODIS) instrument aboard the Terra satellite have also been used for
monitoring particle matter spatial distribution in East Asia.

2.2 Model description

In order to identify sources of the high dust concentration that occurred on 21 March
2010 and to examine how transport paths could affect the dust concentration profile in
Taiwan, the HYSPLIT (Hybrid Single-Particle Lagrangian-Integrated Trajectory) model
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(Draxler and Hess, 1988) was used to trace the origins of the air masses. Further-
more, we employed the WRF/Chem (Ver. 3.2) (Grell et al., 2005) modeling system to
identify the long-range transport associated with the dust episode over northern China
in this study. The meteorological initial and boundary conditions for WRF/Chem were
obtained from National Center for Environmental Prediction (NCEP) Global Forecast
System (GFS) 0.5° x 0.5° analysis data sets (26 vertical levels) at a 6 h interval. The
Yonsei University (YSU) (Hong and Dudhia, 2003) planetary boundary layer scheme
was selected in this study. The horizontal resolution for our dust simulations was 10 km
and the grid box had 541 x 391 points in both the east-west and north-south direc-
tions. There were 51 vertical levels and the lowest level was about 20 m above the
surface. To assure the meteorological fields were well simulated, the four-dimensional
data assimilation (FDDA) scheme was activated based on the NCEP-GFS analysis
data. The Georgia Tech/Goddard Ozone Chemistry Aerosol Radiation Transport (GO-
CART) (Chin et al., 2000, 2002) dust module was employed to study the dust emission
in WRF-Chem.

3 Data analysis
3.1 Spatial distribution of PM,, concentration

Figure 2a—c shows the time series of the hourly PM,, concentration from air quality
monitoring stations in Taiwan. At station WL (Fig. 2a), which is located at the wind-
ward side of the northern tip of Taiwan (Fig. 1c), the PM,, concentration dramatically
increased within 6 h from 88 g m~3 (at 03:00LST) to 1000 pg m'3(at 09:00LST) and
lasted about 12h (09:00~21:00LST) on 21 March 2010. It should be noted that the
peak concentration here was also 1000 pg m~ and it remained at the same value for
12h. This is because the range of the maximum concentration measurement was set
at 1000 pg m~2 as the expected value at this station. Actually, the peak value was ar-
tificially limited at 1000 pg m~2 at eight stations in northern Taiwan (15 stations in total
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over Taipei City and New Taipei City); therefore, these stations did not actually show
the exact peak values. Fortunately, the peaked PM,, concentrations of five urban sta-
tions in northern Taiwan, Shihlin (SL) (Fig. 1c), Jhongshan (JS), Wanhua (WH), Guting
(GT), and Shonshan (SS), were not limited, and PM,, concentrations of higher than
1500 pg m~2 were measured at these during the duration of this episode. At urban
station SL (Fig. 2a), the peaked PM,, concentration was as high as 1724 ug m~° at
12:00LST, 21 March. This is the highest hourly concentration ever recorded for the
monitoring stations of TEPA.

Following the air mass southward over Taiwan’s western plain, the peak PM,, con-
centrations were; 1326 and 1075 ug m~° at GuanYin (GY) and Changhua (CH), respec-
tively (Fig. 1c). Even at southwestern Taiwan, e.g. at Zuoyin (ZY) (Figs. 1c and 2a),
it peaked at higher than 900 pg m~> despite a time lag of about 10 h due to the long-
distance transport from the north. However, over eastern Taiwan, there was a signifi-
cant concentration decrease from the north to the south (Fig. 1c). The peak concentra-
tion at Yilan (YL) was higher than 900 ug m‘3, while at Hualien (HL) it was 598 ug m=2.
However, the peak concentration at Taitung (TT) was lower than 200 pg m™° (Figs. 1c
and 2b). The peak of PM,, concentration at the southern tip of Taiwan, Hunchun (HC)
station, was only about 132 ug m™3 (Figs. 1 and 2b). In other words, this super dust
event did not seem to have had an impact on the southern tip of Taiwan. If we compare
the peak concentrations of the stations in the east of Taiwan with those of similar lat-
itude in the west, i.e. CH (1075 ug m_s) with HL (598 ug m_3) (central Taiwan) and ZY
(976 g m'3) with TT (185 ug m'3) (southern Taiwan) (Fig. 1c¢), the concentrations over
western Taiwan is significantly higher than those over the east. The variation ratio was
estimated at about factor of two to five between west and east over central and south-
ern Taiwan. Furthermore, the variation of the peak concentration between the northern
tip (WL, estimated at >1500 ug m_s) and the southern tip (Hengchun, 132 ug m‘3), only
about 400 km apart, was greater than factor of ten. Figure 3a—d shows the variations
of the wind field and spatial PM,, concentration over Taiwan on 21 March 2010. It is
important to note that the spatial distributions of PM,, concentration in Taiwan were
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quite inhomogeneous for this case. Moreover, at Yang-Ming (YM) Mountain station (al-
titude about 800 m) in northern Taiwan, the PM,, concentration was dramatically down
to about half of that of monitoring stations in Taipei, i.e. 750 ug m~3 (Fig. 1c). Therefore,
the vertical decrease in concentration is also noteworthy.

This super dust event not only impacted on the air quality of Taiwan and the small
islands in the Taiwan Strait, but also as far south as Hong Kong. The stations at the
small islands from north to south are Matzu (MT), Kinmen (KM), and Magong (MG)
(Fig. 1b). Unfortunately, the peak values at these stations were also artificially set
at 1000 pg m~3 (Fig. 2c) for the same reason we mentioned earlier. However, one
can clearly identify the evidence of the transport from the north. The air quality over
Hong Kong, located in south China, was also significantly influenced by this episode
as evidenced at Ta-Men (TM) station (Fig. 1b, latitude south from 22°N). The PMy,
concentration at TM peaked at about 707 pg m~2 from 20:00LST (Fig. 2c), 21 March
to 09:00LST, 22 March. Interestingly, the PM,, concentration at station HC at the
southern tip of Taiwan was only 132 pg m~3 although it lies at about the same latitude
as Hong Kong station TM (Fig. 1b and ¢). The mechanisms causing these unique
distributions are further examined from data analyses and simulation in the following
sections.

3.2 Synoptic weather and GFS data analysis

Atmospheric conditions were considerably stable and it was evident that there was a
separate high at about 1023 hPa at the coastal area around Shanghai at 18:00 UTC, 20
March (02:00 LST, 21 March, UTC+8h=LST), 2010 (Fig. 4a). Following the continental
outflow, significant concentrations of Asian dust were transported to the downstream
regions such as Korea, Japan, and the coastal Shanghai city (Fig. 4a). At 06:00 UTC
(14:00LST), 21 March, dust was already reported over southern China and Taiwan
(Fig. 4b) and dust was still reported even at 18:00 UTC (02:00 LST, 22 March) (Fig. 4c)
and 00:00 UTC (08:00LST, 22 March) (Fig. 4d). Tracing the air mass trajectory back
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from the start of peak concentrations at the different locations around Taiwan (stations
WL, HC, HL, and MG) and Hong Kong for 72h at 500 m height (Fig. 4e), it is clear
that air parcels were mainly from northern China and originated at high altitude (above
3 km) following a typically subsiding high-pressure system to Taiwan. The trajectories
over eastern Taiwan took a long time over the Pacific Ocean, especially for station HC.
In other words, air masses mixed with continental outflow and Pacific easterly at HC.

Figure 5a—d shows the data analysis from the NCEP GFS 0.5 degree data set. It is
clear that the front lies in a NE-SW direction, located from Japan to northeast off Taiwan
at 12:00 UTC, 20 March 2010 (Fig. 5a). Following the movement of the front toward the
east and south, the northwesterly continental outflow north of 28° N changed to north-
northeasterly around northern Taiwan after 00:00 UTC, 21 March 2010 (Fig. 5b). The
processes concerned with the movement of continental outflow over East Asia have
been described by Bole and Chen (1987). They indicated that the cold air mass mixed
with the warm sea surface temperature (SST) in the low boundary, typically migrated
westward, and regenerated the semi-permanent subtropical high of the eastern Pacific.
After that, the temperature gradient gradually decreased in the meridional direction
(Fig. 5¢ and d), and the northeasterly flow gradually changed to easterly east of Taiwan
due to a Pacific high dominating the flow pattern after 06:00 UTC, 21 March.

The easterly flow interacted with the CMR and then formed a cyclonic flow pattern
over northern Taiwan and an anti-cyclonic curvature over southern Taiwan (Fig. 5¢ and
d) (Lee and Zhang, 1992) due to the small Froude number of the flow (Hunt and Snyder,
1980; Lin and Chen, 2002; Lin et al., 2007b). We also noted that directional variation
of the northerly flow was limited north of central Taiwan and east of the CMR between
00:00UTC, 21 March and 06:00UTC, 21 March (Fig. 5b and c). However, over the
Taiwan Strait, the speed of the southward cold front was accelerated (Chen and Hui,
1992; Lee and Hills, 2003; Chien and Kuo, 2006) due to the topographic channel effect
between the Wu-Yi mountain of Southeast China and the CMR (Fig. 5b and c). The
depth of the northeasterly continental outflow usually shrinks to below 1500 m when the
northeasterly continental outflow travel southward in the low altitudes (Lin et al., 2010).
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Therefore, the CMR has the ability to block the northeasterly flow and the Pacific warm
flow from the east. In other words, it is difficult for the easterly flow associated with a
Pacific high to enter over the Taiwan Strait. It is believed that the blocking effect of the
CMR might play an important role in this phenomenon (Lin et al., 2005, 2007b; Chen
and Hui, 1990).

3.3 Surface wind data analysis

As mentioned in the introduction and NCEP GFS data analysis, the enhanced wind
speed over the Taiwan Strait resulted in a channeling effect during the northeasterly
monsoon. We examined the wind field variation over two stations on two small islands
to identify the reasons for this phenomenon. One is the PCY station (46 695, 122.07° E,
25.62° N) located off northern Taiwan and the other is the TC station (46 730, 119.66° E,
23.26° N) located in the Taiwan Strait off China (Fig. 1b). The PCY station represents
the upstream station during the strong northeasterly flow while the TC station is down-
wind. To reasonably identify the impact of channel effect, the average wind directions
between 0° and 60° at the PCY station and between 10° and 50° at the TC station,
sustained for at least two days, were counted during the northeasterly monsoon (From
November to May). Figure 6a shows the average monthly wind speeds at PCY (green
bars) and TC (red bars) for the last three decades (1979-2008). The average wind
speeds for TC and PCY are 11.97ms™' and 8.63ms™", respectively. It is important
to note that the average wind speed at TC is about 3 ms™ greater than that at PCY.
The climatological difference between these two stations roughly illustrates the channel
effect of wind speed enhancement over the Taiwan Strait. Figure 6b shows the obser-
vation and simulation meridional component of wind field at stations PCY and TC from
17 to 23 March 2010. According to frontal passage around 21 March, wind directions
were gradually changing from southerly (20 March, positive value) to northerly (neg-
ative value). Although change of wind direction into northerly takes a few hours, the
wind speed at TC was significantly stronger than that at PCY for both the observation
and model simulation on 21 March 2010. This phenomenon is clearly a response to
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the mechanism of channel effect mentioned earlier, which in turn is clearly responsible
for the spatial distribution of PM,, concentration analyzed in Sect. 3.1. The southward
transport of dust concentration west of the CMR is significantly faster than that on the
east.

3.4 CALIPSO and AOD data analysis

Figure 7b—c shows the average vertical aerosol extinction, mass concentration (PM,),
and particle depolarization profiles of the CALIPSO lidar retrieved at path around Tai-
wan between 23°N and 27°N (blue line in Fig. 7a) at 06:00 UTC, 21 March 2010.
According to Sugimoto et al. (2011), the dust mass concentration (PM;) could be es-
timated by adopting a dust mass/extinction conversion factor (about 1400 ug m~> km)
based on in-situ surface dust measurement. In order to increase signal-to-noise ra-
tio, the resolution of altitude for particle depolarization had been reduced from 30 m
to 400m. Figure 7b shows the significant aerosol layer is below 2km and that it
peaked at around 1 km with extinction coefficient about 0.4 km™" (PM,,~ 600 pg m_s)
at 06:00 UTC, 21 March; the particle depolarization ranged from 20 % to 30 % (Fig. 7¢)
indicates this aerosol layer is predominated by dusts (Murayama et al., 1999; Chen
et al., 2007). However, for the section along this path (green line in Fig. 7a) south of
22° N (ranging between 20° N and 22° N), the vertical profile of extinction coefficient is
about 0.1km™". A thin layer with higher extinction is about 0.2 km~' and with the low-
est depolarization (<10 %) at 0.5 km. The low particle depolarization of this thin layer is
significantly different from dust air mass, i.e. the north section (blue line in Fig. 7b—c).
This thin layer is probably a mixture of dust and spherical water droplet or fine mode
anthropogenic aerosols. In other words, the dust southward transport east of Taiwan is
mainly north of 22° N.

At 18:00UTC, 21 March, another CALIPSO track passed around 130°E, which
shows that the average extinction coefficient between 23°N and 27°N (red line in
Fig. 7a) reached as high as 0.8km™' (PM;,~1100ugm™2) and that particle depo-
larization below 1 km was around 20 % (Fig. 7b—c). The vertical retrievals indicated
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the dusts were transported from north to south within 12h and the major depth of the
dust concentration was mainly below 1 km. The aerosol extinction and particle depo-
larization significantly decreased from 0.4-0.8 km™' and 30% to 0.1km™' and 10%,
respectively, between 500 and 2000 m (Fig. 7b—c). This is consistent with our earlier
conclusion that dust concentration significantly decreased vertically in northern Taiwan.

The aerosol optical depth (AOD) (550 nm) derived from MODIS satellite indicated
a high AOD belt around 2.0 located between 25 and 30°N at 02:30 UTC, 21 March
(Fig. 7d). Later on, at 06:30 UTC, the high AOD ranged from 2.5 to 3.0 over the Taiwan
Strait while only at about 0.5 over eastern Taiwan (Fig. 7e). The spatial distribution of
AOD clearly identified the dust transport inhomogeneous aerosol concentrations over
both sides of the CMR.

4 Model simulation and discussion
4.1 Spatial distribution

Figure 8a—d shows the simulated spatial distribution of Asian dust transport from China
to Taiwan between 20 and 21 March 2010. An east-west high dust concentration belt
(40-45° N) was located over northern China and shifted in a north-south direction to
around 105-115° E (Fig. 8a). Following the continental outflow associated with a high
pressure system, the high concentration dust belt formed a U-shape over East Asia
during study period (Fig. 8a—d). At mentioned earlier in Fig. 4a—b, a separate high
pressure system was located around Shanghai that dominated the strong northeasterly
flow over the Yellow Sea and East China Sea and pushed the dust air mass southward
(Fig. 8a—d). It is obvious that the dust air mass was transported faster over the Taiwan
Strait than over eastern Taiwan (Fig. 8b—d) because of the channel effect between Wu-
Yi Mountain and the CMR of Taiwan. Moreover, the spatial dust concentration east of
the CMR was mainly north of 24° N (Fig. 8d) and also identified by the measurement
of CALIPSO lidar and MODIS (Fig. 7a—e).
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As the continental high pressure moved to the ocean (Fig. 4c—d), the easterly flow
associated with the high pressure system prevailed east of the CMR after 06:00 UTC,
21 March (Fig. 8c—d). At this stage, the wind direction changed to easterly while still
prevailing northeasterly over the Taiwan Strait. This easterly flow plays a role in cutting
off the southward transport of dust air masses east of the CMR. Due to the CMR
blocking effect, the wind field over the Taiwan Strait is not easily affected by this easterly
flow. Therefore, the CMR does not only block the easterly flow from the Pacific Ocean,
but also enhances the speed of the northerly flow over the Taiwan Strait due to the
channel effect. Our simulation compares reasonably well with the reported observation
(Figs. 2 and 3) for the dust in-homogenous spatial distribution and peak concentration.
The simulated dust transport also indicated that the dust transport was primarily north
of 24° N over eastern Taiwan while significant masses of dust could be transported over
the Taiwan Strait and as far south as Hong Kong.

4.2 NE-SW cross section

In order to indentify the mechanisms of the dust transport to Taiwan and its surround-
ings, two NE-SW cross-sections and E-W cross-sections as shown in Fig. 9 have been
examined. Figure 10a—d shows a NE-SW cross-section over the Taiwan Strait (line
NE1 in Fig. 9). Along cross-section NE1, a significant upward motion occurred at
around the 650 km mark, resulting in a convergence between the strong northeasterly
flows and the original southwesterly flow at 12:00 UTC, 20 March (Fig. 10a). The strong
northerly flow carried a significant dust concentration mainly below 850 hPa (Fig. 10b—
f). The vertical structure of theta-e contours indicates that the unstable layer is shallow
and just below 950 hPa after 00:00 UTC, 21 March (Fig. 10c—e). This is due to the
continental cold and dry air mass over the warm ocean. The depth of the dust con-
centration was roughly along the 330 K theta-e line as the air masses were transported
southward (Fig. 10c—f). As the dust air masses were being transported southward,
their depth became thinner (Fig. 10b—f). For example, at 06:00 UTC, 21 March along
cross section NE1, as dust was transported south from 22° N (Fig. 10d, around 200 km
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mark), the depth was only about 500 m (below 950 hPa). Above this elevation, the wind
field was replaced by a strong southerly flow (Fig. 10d—f). The most southerly dust
transport was around the 100 km mark (21.8° N); it was nearly stationary (Fig. 10d—f)
due to the northerly flow being replaced by the southerly after 06:00 UTC, 21 March.

Figure 11a—e shows another NE-SW cross section located east of Taiwan, i.e. line
NE2 in Fig. 9. Along cross-section NE2, the speed of the southward-transported
northerly flow was slower than that of the flow transported along cross-section NE1
at the same time (Figs. 10b—f and 11a—e). A strong upward motion could also easily
be found along this cross section during the study period, resulting in the leading edge
of the continental outflow (northerly) interacting with the southerly flow (Fig. 11a—d).
Interestingly, if we check the theta-e contour line of 330K, it is nearly stationary around
the 400-500 km mark along the cross section between 06:00 UTC and 18:00 UTC, 21
March 2010 (Fig. 11c—e). In other words, the farthest southward transport only reached
about the middle of this cross section, i.e. around the 400-500 km mark around 24° N.
It is important to note that the transport mechanisms at the NE-SW cross sections are
significantly different between the two sides of the CMR due to the mountain channel
effect that enhanced the northeasterly wind speed over the Taiwan Strait.

4.3 E-W cross-section

To understand the spatial discrepancy in transport mechanisms, two E-W cross-
sections (EW1 and EW2) have been conducted. Figure 12a—b shows the E-W cross
section at 27° N (EW1 in Fig. 9), which represents the upstream continental outflow to
Taiwan. The light dust concentration along with the strong northerly flow first appeared
over the ocean at the 630 km mark in Fig. 12a at about 950 hPa at 14:00 UTC, 20 March
2010. Following the strong northeasterly flow, the dust concentration was nearly ho-
mogenous along this cross-section within 200 km (marked from 500~700 km) away
from the coast (Fig. 12b) and the depth was about 1500 m (850 hPa) at 20:00 UTC, 20
March.
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Figure 13a—d is the E-W cross section at 24.5° N passing through central Taiwan
(EW2 in Fig. 9). Before the dust air mass was transported to this cross section, the
wind speed at both sides of the CMR was nearly the same in the boundary layer at
18:00 UTC, 20 March (Fig. 13a). At 00:00 UTC, 21 March, the dust air mass had been
transported to this cross-section over the Taiwan Strait, while there wasn’t any dust
east of the CMR (Fig. 13b). It should be noted that the dust concentration is quite inho-
mogeneous at downstream over both sides of CMR along this cross section. Actually,
deduced from the northeasterly prevailing wind, the wind speed of the easterly wind
component over the Taiwan Strait was stronger than that east of the CMR along EW2
at 00:00 UTC, 21 March. It is estimated that the wind speed over the Taiwan Strait was
about 2-4ms™" greater than that east of the CMR during the northeasterly prevail-
ing wind period, not only for the simulation (Fig. 8c), but also for the true observation
(Fig. 6). The dust transport west of the CMR was earlier and had higher concentration
than that east of the CMR also clearly identified at this cross section (Fig. 13b—e). The
dust concentration over the Taiwan Strait (western Taiwan) is about a factor of 2—-3 of
that east of the CMR at this cross-section (Fig. 13b—d).

The above discussion implies that the existence of the CMR played significant roles
in dominating the local circulations and in the spatial distribution of the dust concentra-
tion during this episode. The effects of the CMR include (a) the enhancement of the
prevailing northeasterly flow over the Taiwan Strait due to the channel effect and, (b)
blocking of the easterly from the Pacific Ocean from entering over the Taiwan Strait.
That is why the spatial distribution of dust concentration showed significantly inhomo-
geneous over eastern and western Taiwan.

5 Sensitivity study of topographic height

In order to further examine the role of the CMR, the altitude of the mountain has been
artificially reduced to a quarter of its original height (Case QT). Figure 14a shows
the north-south cross sections A (121°E, 25.5-27.5°N) and B (120° E, 23.5-25.5° N)
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representing upstream and downwind, respectively, during northeasterly flow. Fig-
ure 14b—e show the time series of the average wind speed at cross sections A and
B for the original (control) run and case QT.

As mentioned earlier, the southerly flow (positive value) prevailed before frontal pas-
sage at these two cross-sections before 12:00 UTC, 20 March for the control run and
case QT (Fig. 14b—e). For the control run, after the frontal passage on 12:00 UTC, 20
March, the northeasterly prevailed and the wind direction along cross-section A had
changed to northerly (negative value) earlier than downwind over the Taiwan Strait
(Cross-section B) (Fig. 14b—c). The intensity of the northerly flow at cross-section B
was significantly greater than at cross-section A from 00:00 UTC, 21-22 March due to
the channel effect (Fig. 14b—c). At cross-section A, a southerly wind speed developed
between 25.5-26° N at around 00:00 UTC, 22 March. This is because the circulation
of the high pressure system had already moved to the ocean (center, around south
Japan) (Fig. 4d) and thus a southerly wind component occurred (Fig. 14b). However,
at cross section B, the northerly flows still prevailed over the Taiwan Strait because
the southeasterly flow (induced by the high pressure system over the ocean) had been
blocked by the CMR (Fig. 14c).

For case QT, the northerly flow started to develop at the same time for the control
run (Fig. 14 a and c; Fig. 14b and d). However the intensity of the northerly flow was
significantly weaker for case QT than for the control run at cross section B (Fig. 14c
and e). Furthermore, the northerly wind was replaced by the southerly after 12:00 UTC,
22 March for case QT at both cross section A and B (Fig. 14d—e). The duration of the
northerly flow prevailing over the Taiwan Strait (cross-section B) was maintained longer
for the control run (Fig. 14c) than for case QT (Fig. 14e). This is because the CMR at
its real topographic height in the control run could effectively obstruct the easterly flow
(associated with the Pacific high) from entering over the Taiwan Strait. Thus, at the
same cross section B, the northerly flow could prevail for a longer time for the control
run than for case QT (Fig. 14c and e). Again, the sensitivity discussion in this section
clearly indicates the important effects of topographic blocking and channeling on the
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prevailing northeasterly wind and its effect on spatial distribution of LRT Asian dust in
Taiwan.

6 Summary

A super heavy dust event was identified using data from Taiwan Environmental Pro-
tection Administration (TEPA) air quality monitoring stations. A dramatically elevated
concentration of PM,,, along with a strong northeasterly was observed in Taiwan on
21 March 2010. At Shihlin station, the PM;, concentration was as high as 1724 ug m~3
and at most stations the hourly concentrations were higher than 1000 pg m'3; these
levels were sustained for more than 10 h over northern Taiwan. We have found that
spatial distributions of PM,, concentration and transport speed for this case were sig-
nificantly different between eastern and western Taiwan. The peak PM,, concentra-
tions over Taiwan’s western plain and island stations in the Taiwan Strait mostly ranged
from 1500 to 900 pg m~2, and even as far south as Hong Kong the concentration was
higher than 700 ug m3. However, over eastern Taiwan, peaks at stations Hualien (HL)
and Taitung (TT) were only 598 and 185 ug m'3, respectively. Moreover, the peak con-
centration was only about 132 ug m~° at Hungchun (HC) station at the southern tip of
Taiwan. In other words, the peak concentrations ranged from factors of two to five
between western and eastern Taiwan, and the range was greater than a factor of ten
between the northern tip and southern tip of Taiwan, only about 400 km apart.
Numerical results from the WRF/chem model suggest that the simulated time series
of this super heavy dust storm agree well with the observations, the spatial distribution
of PM;, concentration over Taiwan, CALIPSO retrieval data, and MODIS AOD data.
The simulation results also suggested that the geographical structure of the Central
Mountain Range (CMR) in Taiwan plays an important role in the discrepancies found in
spatial distributions of PM,, concentrations over western and eastern of Taiwan. The
effects of the CMR include (a) the enhancement of the prevailing northeasterly flow
over the Taiwan Strait due to the channel effect and, (b) blocking of the easterly from
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the Pacific Ocean from entering over the Taiwan Strait. Data analyses and simula-
tion suggest these effects were the major reasons that the spatial distribution of PM,
concentrations of this super heavy dust episode over Taiwan was significantly inhomo-
geneous. These phenomena affected not only the air quality distribution over Taiwan,
but also the biogeochemistry cycle over the sea surrounding Taiwan and are worthy of
further study.
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Fig. 1. (a) Location of Taiwan and surrounding countries in East Asia. (b) Location of Taiwan
Environmental Protection Administration (TEPA) island stations (MC, KM and MG) and Cen-
tral Weather Bureau meteorological stations (PCY, TC) in the Taiwan Strait and Ta-Men (TM)
station at Hong Kong. The number in parentheses indicates the peak concentration of the
TM during this episode. (¢) Location of TEPA ground monitoring stations (closed circles) of
air quality network in Taiwan with topography. The numbers in parentheses indicate the peak
concentrations of the selected stations (big closed circles) during this episode.

26462

Jadeq uoissnosiq | Jadeq uoissnosiq | J4edeq uoissnosiq | Jaded uoissnosi(

ACPD
11, 26441-26475, 2011

The impact of
channel effect on

C.-Y. Lin et al.

: III III


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/26441/2011/acpd-11-26441-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/26441/2011/acpd-11-26441-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

O
(7]
a.) Stations over Taiwan western Plain PM10 (ug/m3) (@)
L. 2 ACPD
o A 0
1600 II “\\ 6'
1400 — S 11, 26441-26475, 2011
o 1200 wL
]
S 1000 —Mm 0
% 800 - Q
600 - g
e —a = The impact of
O T T T L U - channel effect on
£ 2 £ 3 £ 82 & 5 2 2 8 7 =
o o (=} I - - - o N ~ ~ o o H
T 88§ i idgegiggoa Asian dust transport
3 3 S 3 S 3 S S S S D B
@ dynamics
b) Stations over eastern Taiwan PM10 (ug/m3) 8
2000 ) .
1800 o, C.-Y. Lin et al.
1600 o
1400 =)
= 1200
S 1000 -y ;DU
g
800 /\/\ —HL o)
600 A I~ —TT ()
poos YA BN e =
200 f : ; 22 Qgﬁ
0 —— . — - = —
8 & 8 £ 8§ % 8 ¢ 4 2 ¥ g 9y
$ 8§ & &§ 3 3 3 8 § § & & =@
§ & & 5 & & & 5 & & &8 & &
g 2 8 8 g 8 8 % 38 8 38 & 3 w)
i
o
c) Island stations at Taiwan Strait PM10 (ug/m3) C
2000 (7]
1800 (23
1600 —mc o)
1400
g 1200 —KM 5
g 1283 —MG o)
600 —™ =
400 ©
200 (Hong-Kong) D
° =]

ST £ £ 3 52 £ g

£ 8 & 5 £ & &8 5 &£ & &8 5 <

03,
03,
03,

0
03,
03,

0
03,
03,
03,

0
03,

Fig. 2. (a) Hourly concentration variation of PM,, (ug m~°) for the selected stations (SL, WL,
YM, CH, TN and ZY) at Taiwan’s western plain during 12:00 LST, 20—-23 March 2010. (b)
Hourly concentration variation of PM,, (ug m‘3) for the selected stations (YL, HL, TT and HC)
at eastern Taiwan during 12:00 LST, 20-23 March 2010. (c) Hourly concentration variation of
PM,, (Mg m‘3) for the island stations (MC, KM and MG) in the Taiwan Strait and station TM at
Hong Kong during 12:00 LST, 20-23 March 2010.
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Fig. 3. Spatial distribution of PM,, (ug m™~2) concentration and wind recorded in Taiwan at (a)
14:00LST, 21 March (b) 20:00 LST, 21 March (¢) 00:00 LST, 22 March (d) 10:00 LST, 22 March.
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Fig. 4. Surface weather chart and dust storm report (denoted by dollar signs) at (a) 18:00 UTC,
20 March 2010 (b) 06:00UTC, 21 March 2010 (¢) 18:00 UTC, 21 March 2010 (d) 00:00 UTC,
22 March 2010. (e) Result of the HYSPLIT model 3-day backward trajectory analysis at altitude
of 500 m starting from the time of peak value for stations at Taiwan (WL, HL, HC, MG) and TM

at Hong Kong.
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Fig. 5. The 925hPa recorded wind, theta-e (colored) and sea-surface pressure (contour)
around Taiwan at (a) 12:00 UTC, 20 March 2010 (b) 00:00 UTC, 21 March 2010 (¢) 06:00 UTC,

21 March 2010 (d) 12:00 UTC, 21 March 2010.
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Fig. 6. (a) Time series of monthly average wind speed during northeasterly monsoon
(November~May) for station TC (red bars) and station PCY (green bars) between 1979 and
2008. (b) The observation and simulation N-S component of wind speed at stations PCY and
TC during 00:00 LST, 17-24 March 2010.
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Fig. 7. (a) The CALIPSO orbit tracks around Taiwan at 06:00 UTC(blue and green), and
18:00 UTC (red). (b) The vertical distribution of PM,, concentration deduced from CALIPSO
Lidar at orbit tracks in (a) around Taiwan. (c) The vertical distribution of the percentage of
depolarization ratio from CALIPSO Lidar at orbit tracks in (a) around Taiwan. (d) The aerosol
optical depth (AOD) deduced from the MODIS satellite at 02:30 UTC. (e) The aerosol optical
depth (AOD) deduced from the MODIS satellite at 06:30 UTC.
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Fig. 8. The simulation spatial distribution of PM,, concentration and wind field at 1000 hPa (a)
20:00 UTC, 20 March 2010 (b) 00:00 UTC, 21 March 2010 (c¢) 06:00 UTC, 21 March 2010 (d)

12:00 UTC, 21 March 2010.
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Fig. 9. Schematic illustration of cross-sections (NE1, NE2, EW1 and EW2) in this study.
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Fig. 14. (a) Schematic illustration of cross-sections A and B. (b) Temporal variation of N-S component of wind speed
during 20-23 May 2010 for control run along cross A in (a). The contour is shown in 3ms™" interval. (c) Temporal
variation of N-S component of wind speed during 20—23 May 2010 for control run along cross B in (a). The contour is
shown in 3ms™! interval. (d) Temporal variation of N-S component of wind speed during 20—23 May 2010 for Case
QT along cross A in (a). The contour is shown in 3ms™" interval. (e) Temporal variation of N-S component of wind
speed during 20—23 May 2010 for case QT along cross B in (a). The contour is shown in 3m s~ interval.
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